首先说明代码只是帮助理解,并未写出梯度下降部分,默认参数已经被固定,不影响理解。代码主要实现rnn原理,只使用numpy库,不可用于gpu加速。
import numpy as np class rnn(): def __init__(self, input_size, hidden_size, num_layers, bidirectional=false): self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.bidirectional = bidirectional def feed(self, x): ''' :param x: [seq, batch_size, embedding] :return: out, hidden ''' # x.shape [sep, batch, feature] # hidden.shape [hidden_size, batch] # whh0.shape [hidden_size, hidden_size] wih0.shape [hidden_size, feature] # whh1.shape [hidden_size, hidden_size] wih1.size [hidden_size, hidden_size] out = [] x, hidden = np.array(x), [np.zeros((self.hidden_size, x.shape[1])) for i in range(self.num_layers)] wih = [np.random.random((self.hidden_size, self.hidden_size)) for i in range(1, self.num_layers)] wih.insert(0, np.random.random((self.hidden_size, x.shape[2]))) whh = [np.random.random((self.hidden_size, self.hidden_size)) for i in range(self.num_layers)] time = x.shape[0] for i in range(time): hidden[0] = np.tanh((np.dot(wih[0], np.transpose(x[i, ...], (1, 0))) + np.dot(whh[0], hidden[0]) )) for i in range(1, self.num_layers): hidden[i] = np.tanh((np.dot(wih[i], hidden[i-1]) + np.dot(whh[i], hidden[i]) )) out.append(hidden[self.num_layers-1]) return np.array(out), np.array(hidden) def sigmoid(x): return 1.0/(1.0 + 1.0/np.exp(x)) if __name__ == '__main__': rnn = rnn(1, 5, 4) input = np.random.random((6, 2, 1)) out, h = rnn.feed(input) print(f'seq is {input.shape[0]}, batch_size is {input.shape[1]} ', 'out.shape ', out.shape, ' h.shape ', h.shape) # print(sigmoid(np.random.random((2, 3)))) # # element-wise multiplication # print(np.array([1, 2])*np.array([2, 1]))
到此这篇关于numpy实现rnn原理实现的文章就介绍到这了,更多相关numpy实现rnn内容请搜索www.887551.com以前的文章或继续浏览下面的相关文章希望大家以后多多支持www.887551.com!