前言
pytorch
作为一款深度学习框架,已经帮助我们实现了很多很多的功能了,包括数据的读取和转换了,那么这一章节就介绍一下pytorch
内置的数据读取模块吧
模块介绍
- pandas 用于方便操作含有字符串的表文件,如csv
- zipfile python内置的文件解压包
- cv2 用于图片处理的模块,读入的图片模块为bgr,n h w c
- torchvision.transforms 用于图片的操作库,比如随机裁剪、缩放、模糊等等,可用于数据的增广,但也不仅限于内置的图片操作,也可以自行进行图片数据的操作,这章也会讲解
- torch.utils.data.dataset torch内置的对象类型
- torch.utils.data.dataloader 和dataset配合使用可以实现数据的加速读取和随机读取等等功能
import zipfile # 解压 import pandas as pd # 操作数据 import os # 操作文件或文件夹 import cv2 # 图像操作库 import matplotlib.pyplot as plt # 图像展示库 from torch.utils.data import dataset # pytorch内置对象 from torchvision import transforms # 图像增广转换库 pytorch内置 import torch
初步读取数据
数据下载到
我们先初步编写一个脚本来实现图片的展示
# 解压文件到指定目录 def unzip_file(root_path, filename): full_path = os.path.join(root_path, filename) file = zipfile.zipfile(full_path) file.extractall(root_path) unzip_file(root_path, zip_filename) # 读入csv文件 face_landmarks = pd.read_csv(os.path.join(extract_path, csv_filename)) # pandas读出的数据如想要操作索引 使用iloc image_name = face_landmarks.iloc[:,0] landmarks = face_landmarks.iloc[:,1:] # 展示 def show_face(extract_path, image_file, face_landmark): plt.imshow(plt.imread(os.path.join(extract_path, image_file)), cmap='gray') point_x = face_landmark.to_numpy()[0::2] point_y = face_landmark.to_numpy()[1::2] plt.scatter(point_x, point_y, c='r', s=6) show_face(extract_path, image_name.iloc[1], landmarks.iloc[1])
使用内置库来实现
实现mydataset
使用内置库是我们的代码更加的规范,并且可读性也大大增加
继承dataset,需要我们实现的有两个地方:
- 实现
__len__
返回数据的长度,实例化调用len()
时返回 __getitem__
给定数据的索引返回对应索引的数据如:a[0]transform
数据的额外操作时调用
class facedataset(dataset): def __init__(self, extract_path, csv_filename, transform=none): super(facedataset, self).__init__() self.extract_path = extract_path self.csv_filename = csv_filename self.transform = transform self.face_landmarks = pd.read_csv(os.path.join(extract_path, csv_filename)) def __len__(self): return len(self.face_landmarks) def __getitem__(self, idx): image_name = self.face_landmarks.iloc[idx,0] landmarks = self.face_landmarks.iloc[idx,1:].astype('float32') point_x = landmarks.to_numpy()[0::2] point_y = landmarks.to_numpy()[1::2] image = plt.imread(os.path.join(self.extract_path, image_name)) sample = {'image':image, 'point_x':point_x, 'point_y':point_y} if self.transform is not none: sample = self.transform(sample) return sample
测试功能是否正常
face_dataset = facedataset(extract_path, csv_filename) sample = face_dataset[0] plt.imshow(sample['image'], cmap='gray') plt.scatter(sample['point_x'], sample['point_y'], c='r', s=2) plt.title('face')
实现自己的数据处理模块
内置的在torchvision.transforms
模块下,由于我们的数据结构不能满足内置模块的要求,我们就必须自己实现
图片的缩放,由于缩放后人脸的标注位置也应该发生对应的变化,所以要自己实现对应的变化
class rescale(object): def __init__(self, out_size): assert isinstance(out_size,tuple) or isinstance(out_size,int), 'out size isinstance int or tuple' self.out_size = out_size def __call__(self, sample): image, point_x, point_y = sample['image'], sample['point_x'], sample['point_y'] new_h, new_w = self.out_size if isinstance(self.out_size,tuple) else (self.out_size, self.out_size) new_image = cv2.resize(image,(new_w, new_h)) h, w = image.shape[0:2] new_y = new_h / h * point_y new_x = new_w / w * point_x return {'image':new_image, 'point_x':new_x, 'point_y':new_y}
将数据转换为torch
认识的数据格式因此,就必须转换为tensor
注意
: cv2
和matplotlib
读出的图片默认的shape为n h w c
,而torch
默认接受的是n c h w
因此使用tanspose
转换维度,torch
转换多维度使用permute
class totensor(object): def __call__(self, sample): image, point_x, point_y = sample['image'], sample['point_x'], sample['point_y'] new_image = image.transpose((2,0,1)) return {'image':torch.from_numpy(new_image), 'point_x':torch.from_numpy(point_x), 'point_y':torch.from_numpy(point_y)}
测试
transform = transforms.compose([rescale((1024, 512)), totensor()]) face_dataset = facedataset(extract_path, csv_filename, transform=transform) sample = face_dataset[0] plt.imshow(sample['image'].permute((1,2,0)), cmap='gray') plt.scatter(sample['point_x'], sample['point_y'], c='r', s=2) plt.title('face')
使用torch内置的loader加速读取数据
data_loader = dataloader(face_dataset, batch_size=4, shuffle=true, num_workers=0)for i in data_loader: print(i['image'].shape) break
torch.size([4, 3, 1024, 512])
注意
: windows
环境尽量不使用num_workers
会发生报错
总结
这节使用内置的数据读取模块,帮助我们规范代码,也帮助我们简化代码,加速读取数据也可以加速训练,数据的增广可以大大的增加我们的训练精度,所以本节也是训练中比较重要环节
到此这篇关于pytorch数据读取的实现示例的文章就介绍到这了,更多相关pytorch数据读取内容请搜索www.887551.com以前的文章或继续浏览下面的相关文章希望大家以后多多支持www.887551.com!