前言
很多小伙伴在面试中都会被问道 redis的常用数据结构有哪些?
可能很大一部分回答都是 string、hash、list、set、zset。当然啦,这个答案肯定是没有错的,但是相信这个答案,面试官已经听的耳朵都起茧了。
本身我们选择的这个行业竞争就极强,学历拼不过难道还要知识都拼不过吗???
希望进来的小伙伴能好好看完这篇文章,也希望你以后的回答能是 常用的数据结构有string、hash、list、set、zset,但我平时可能还会用到 hyperloglog和bitmap。相信面试官听到你的回答,会有眼前一亮的感觉!
话不多说,开始吧,⬇
hyperloglog
hyperloglog简介
hyperloglog是一种概率数据结构,用来估算数据的基数。
基数:可简单理解为集合中不同元素的个数,也可以理解为set
对于一个集合 1、2、3、4,那么它的基数为 4
对于一个集合 1、2、3、4、1,那么它的基数也是 4
hyperloglog作用
我们可以使用它来统计 uv。
uv即:uniquevisitor,uv指的是独立访客的数量,一台电脑被视为一个独立访客。一台电脑早上访问了一次,下午又访问了一次,两次访问的都是同一个网站,只能被计算一次。
那可能有小伙伴问了,及刚才都说了可以理解为一个set,那我为什么要用它来统计uv?
redis 的 hyperloglog 通过牺牲准确率来减少内存空间的消耗,只需要12k内存,在标准误差0.81%的前提下,能够统计2^64个数据。而set就需要消耗大量空间
所以 hyperloglog 是否适合在比如统计区间活跃度这样对精度要求不高的场景。
为什么能这么存储,主要依赖于伯努利试验,各位小伙伴可以去百度了解了解。
命令行中的使用
- pfadd <key> [element]:添加数据
- pfcount <key>:统计数量
springboot中的使用
可以看到结果值为:19891与真实值:20000相差不了多少,虽说有误差,但相比于set已经是很好了!
除此之外,在springboot中还可以对多个key进行合并,统计合并之后的数据量
可见,数据还是19891
bitmap
bitmap简介
位图不是特殊的数据结构,它其实就是普通的字符串,也就是 byte 数组(有了解布隆过滤器的小伙伴可展开联想一下)
通过一个bit位来表示某个元素对应的值或者状态,其中的key就是对应元素本身。
位操作分为两组:
- 固定时间的单个位操作(如将一个位设置为1或0或获取其值)
- 对位组的操作,例如计算给定位范围内设置的位的数量(例如,人口计数)。
位图的最大优点之一是,在存储信息时,它们通常可以节省大量空间。例如,在以增量用户id表示不同用户的系统中,仅使用512 mb内存就可以记住40亿用户的一位信息
bitmap作用
使用场景
- 各种实时分析。
- 存储与对象id相关联的空间高效但高性能的布尔信息。
我们可以使用它来统计 dau。
日均活跃用户数量(daily active user,dau)是用于反映网站、互联网应用或网络游戏的运营情况的统计指标。日活跃用户数量通常统计一日(统计日)之内,登录或使用了某个产品的用户数(去除重复登录的用户)。
命令行使用bitmap
使用 setbit 和 getbit 命令设置和检索位:
- setbit命令将位号作为其第一个参数,将其设置为1或0的值作为其第二个参数。如果所寻址的位超出当前字符串长度,则该命令将自动放大字符串。
- getbit 只是返回指定索引处的位的值。超出范围的位(寻址超出存储在目标键中的字符串长度的位)始终被视为零。
在位组上还有以下三个命令:
- bitop 在不同的字符串之间执行按位运算。提供的运算为and,or,xor和not。
- bitcount 执行填充计数,报告设置为1的位数。
- bitpos 查找具有指定值0或1的第一位。
springboot使用bitmap
尾言
到此这篇关于redis高级数据类型hyperloglog、bitmap的使用的文章就介绍到这了,更多相关redis hyperloglog、bitmap内容请搜索www.887551.com以前的文章或继续浏览下面的相关文章希望大家以后多多支持www.887551.com!