从np.random.normal()到正态分布的拟合操作

先看伟大的高斯分布(gaussian distribution)的概率密度函数(probability density function):

对应于numpy中:

numpy.random.normal(loc=0.0, scale=1.0, size=none)

参数的意义为:

loc:float

此概率分布的均值(对应着整个分布的中心centre)

scale:float

此概率分布的标准差(对应于分布的宽度,scale越大越矮胖,scale越小,越瘦高)

size:int or tuple of ints

输出的shape,默认为none,只输出一个值

我们更经常会用到的np.random.randn(size)所谓标准正态分布

对应于np.random.normal(loc=0, scale=1, size)。

采样(sampling)

# 从某一分布(由均值和标准差标识)中获得样本
mu, sigma = 0, .1
s = np.random.normal(loc=mu, scale=sigma, size=1000)

也可使用scipy库中的相关api(这里的类与函数更符合数理统计中的直觉):

import scipy.stats as st
mu, sigma = 0, .1
s = st.norm(mu, sigma).rvs(1000)

校验均值和方差:

>>> abs(mu < np.mean(s)) < .01
true
>>> abs(sigma-np.std(s, ddof=1)) < .01
true
            # ddof,delta degrees of freedom,表示自由度
            # 一般取1,表示无偏估计,

拟合

我们看使用matplotlib.pyplot便捷而强大的语法如何进行高斯分布的拟合:

import matplotlib.pyplot as plt
count, bins, _ = plt.hist(s, 30, normed=true)
        # normed是进行拟合的关键
        # count统计某一bin出现的次数,在normed为true时,可能其值会略有不同
plt.plot(bins, 1./(np.sqrt(2*np.pi)*sigma)*np.exp(-(bins-mu)**2/(2*sigma**2), lw=2, c='r')
plt.show()

或者:

s_fit = np.linspace(s.min(), s.max())
plt.plot(s_fit, st.norm(mu, sigma).pdf(s_fit), lw=2, c='r')

np.random.normal()的含义及实例

这是个随机产生正态分布的函数。(normal 表正态)

先看一下官方解释:

有三个参数

loc:正态分布的均值,对应着这个分布的中心.代表下图的μ

scale:正态分布的标准差,对应分布的宽度,scale越大,正态分布的曲线 越矮胖,scale越小,曲线越高瘦。 代表下图的σ

size:你输入数据的shape,例子:

下面展示一些 内联代码片。

// an highlighted block
a=np.random.normal(0, 1, (2, 4))
print(a)
输出:
[[-0.29217334  0.41371571  1.26816017  0.46474676]
 [ 1.33271487  0.80162296  0.47974157 -1.49748788]]

看这个图直观些:

以下为官方文档:

以上为个人经验,希望能给大家一个参考,也希望大家多多支持www.887551.com。

(0)
上一篇 2022年3月21日
下一篇 2022年3月21日

相关推荐