前言
什么是慢查询,如何优化慢查询,下面介绍这两个知识点的相关知识。
慢查询基础:优化数据访问
是否向数据库请求了不需要的数据
查询不需要的记录:解决方案:查询后面加上limit
多表关联时返回全部列:解决方案:只取需要的列
总是取出全部列:select * 解决方案:最好还是获取部分列,除非应用程序处缓存列的数据了
重复查询相同的数据:解决方案:需要时从缓存中取出
mysql是否在扫描额外的记录
可以从响应时间,扫描的行数,返回的行数来进行查询开销的衡量。
要想减少扫描行数可以使用索引对需要的记录进行覆盖,但是增加索引不意味着就能让扫描的行数等于返回的行数,比如sum,count之类的聚合函数
重构查询的方法
一个复杂查询还是多个简单查询
在过去,总是强调需要数据库层完成尽可能多的工作,因为过去网络通信查询解析和优化是一件代价很高的事情。
但是这样的想法对于mysql并不适用,mysql从设计上让连接和断开连接都很轻量级,在返回一个小的查询结果方面很高效。现代的网络速度比以前要快很多,无论是带宽还是延迟。在某些版本的mysql上,即使在一个通用服务器上,也能够运行每秒超过10万的查询,即使是一个千兆网卡也能轻松满足每秒超过2000次的查询。所以运行多个小查询现在已经不是大问题了。
当然,相比较于内部扫描,响应数据给客户端更加耗时,所以在同条件下,使用尽可能少的查询更好。
切分查询
当使用sql进行查询时,需要注意将大查询切分成小查询,可以减少对数据库的影响,因为一个大语句一次性完成的话,则可能一次锁住很多数据,占满整个事务日志,耗尽系统资源,阻塞其他查询。
比如我们做数据统计时要对大量订单号的信息进行查询,那么是一次性用in查询,还是切割参数list多次查询呢,答案是切割参数list多次查询,因为当in里面的参数过多时,mysql就会认为再走索引已经不行了,可能就会进行全表查询,如果这个时候数据表数据量过大,那可能就会造成查询超时。
// chops a list into non-view sublists of length l static <t> list<list<t>> chopped(list<t> list, final int l) { list<list<t>> parts = new arraylist<list<t>>(); final int n = list.size(); for (int i = 0; i < n; i += l) { parts.add(new arraylist<t>( list.sublist(i, math.min(n, i + l))) ); } return parts; } list<integer> numbers = collections.unmodifiablelist( arrays.aslist(5,3,1,2,9,5,0,7) ); list<list<integer>> parts = chopped(numbers, 3); system.out.println(parts); // prints "[[5, 3, 1], [2, 9, 5], [0, 7]]" parts.get(0).add(-1); system.out.println(parts); // prints "[[5, 3, 1, -1], [2, 9, 5], [0, 7]]" system.out.println(numbers); // prints "[5, 3, 1, 2, 9, 5, 0, 7]" (unmodified!)
在程序中将list截断,从而使查询能使用索引而不是进行全表扫描。
阿里开发手册中就推荐仔细评估in后面的集合元素数量,控制在1000个之内。
分解关联查询
将多表inner join 进行分解,分解成小查询,超过三个表的join,就需要禁止了。
优点有:
- 缓存的效率会更高,
- 分解后的查询可以减少锁的竞争
- 应用层可以缓存查询数据,减小数据库的压力。
- 可以提升查询效率,因为用主键之类进行in查询,比按照条件范围查询可能会更高效,尤其是大表的时候。
- 可以减少冗余记录的查询
- 更进一步,这样做相当于在应用中实现了哈希关联,而不是使用mysql的嵌套循环关联。某些场景哈希关联的效率要高很多。
总结
到此这篇关于mysql慢查询以及重构查询的文章就介绍到这了,更多相关mysql慢查询重构查询内容请搜索www.887551.com以前的文章或继续浏览下面的相关文章希望大家以后多多支持www.887551.com!