小学数学观察物体知识点与题目

在学习数学时,老师们总是通过已有知识自然而然过渡到新知识,水到渠成,亦即所谓“温故而知新”。所以我们要多复习学过的数学知识。下面是张承辉整理的小学数学观察物体知识点与题目,仅供参考希望能够帮助到大家。

小学数学观察物体知识点与题目

1、从正面看一个立体图形,看到的是长方形,这个立体图形可能是长方体,还可能是圆柱。

2、看到的立体图形的一个面是正方形,这个立体图形可能是正方体,还可能是长方体。

3、看到的立体图形的一个面圆形,这个立体图形可能是球,还可能是圆柱,圆锥。

4、面对面看到的物体形状一样,但方向相反。

5、观察组合物体的表面时,与物体的高矮和是否对齐无关。

6、练习

(1)在不同的位置观察同一个物体,看到的形状一定不同。(×)(球)

(2)在同一位置观察同一个物体,最多只能看到3个面。(√)

(3)从正面看一个正方体,看到一个长方形。(×)

(4)小明从一个物体的上面看到一个正方形,那么这个物体一定是正方形。(×)

(5)从一个长方体的任何一面观察,都不可能看到正方形。(×)

(6)从不同的位置看同一个物体,看到的形状(不一定)相同。

(7)从正面看一个正方体,只能看到一个(正方)形。

(8)从一个物体的上面看到一个正方形,它是一个(长方体或正方体)。

(9)从一个长方体的任何一个面看,不可能看到(圆)。

数学概念

正确地理解和形成一个数学概念,必须明确这个数学概念的内涵——对象的“质”的特征,及其外延——对象的“量”的范围。一般来说,数学概念是运用定义的形式来揭露其本质特征的。但在这之前,有一个通过实例、练习及口头描述来理解的阶段。

比如,儿童对自然数,对运算结果——和、差、积、商的理解,就是如此。到小学高年级,开始出现以文字表达一个数学概念,即定义的方式,如分数、比例等。有些数学概念要经过长期的酝酿,最后才以定义的形式表达,如函数、极限等。定义是准确地表达数学概念的方式。

许多数学概念需要用数学符号来表示。如dy表示函数y的微分。数学符号是表达数学概念的一种独特方式,对学生理解和形成数学概念起着极大的作用,它把学生掌握数学概念的思维过程简约化、明确化了。许多数学概念的定义就是用数学符号来表达,从而增强了科学性。

许多数学概念还需要用图形来表示。有些数学概念本身就是图形,如平行四边形、棱锥、双曲线等。有些数学概念可以用图像来表示,比如函数y=x+1的图像。有些数学概念具有几何意义,如函数的微分。数形结合是表达数学概念的又一独特方式,它把数学概念形象化、数量化了。

总之,数学概念是在人类历史发展过程中,逐步形成和发展的。

数学中什么叫棱

物体上的条状突起,或不同方向的两个平面相连接的部分。棱柱是几何学中的一种常见的三维多面体,指上下底面平行且全等,侧棱平行且相等的封闭几何体。在正方体和长方体中,具有12个棱长,且棱长在不同的几何体中有不同的特点。

小学数学观察物体知识点与题目

(0)
上一篇 2022年4月19日
下一篇 2022年4月19日

相关推荐