求解几道线性代数的题

快速导读:

  • 高分求解几道线性代数题目
  • 求教几道线性代数(行列式)的题目
  • 求解几道线性代数(行列式)的计算题
  • 谁帮我做几道线性代数题?
  • 求教几道线性代数题
  • Q1:高分求解几道线性代数题目

    求解行列式方程|A-λE|=0,得矩阵A的特征根:1 1 10 求解(A-1E)X=0的基础解系为:(-2 1 0)^T(2 0 1)^T 一般说来重根的基础解系不一定是正交的,下面将其正交化正交化方法如下:B1=A1B2 = A2 -B1 x (A2,B1)/(B1,B1) 正交化后的结果是:(-2 1 0)^T(0。

    4 0。8 1)^T 将其单位化得:(-0。89443 0。44721 0)^T(0。29814 0。

    59628 0。74536)^T 求解(A-10E)X=0的基础解系为:(-0。 5 -1 1)^T 将其单位化得:(-0。

    33333 -0。66667 0。66667)^T 将单位化后的基础解系合并,即得所求正交矩阵:T = -0。8944 0。2981 -0。3333 0。

    4472 0。5963 -0。6667 0 0。7454 0。

    6667注:因为特征根的顺序不唯一,所以得到的正交矩阵T也不是唯一的 其中T^(-1)AT = T”AT =1 0 00 1 00 0 10七A为正交阵,即A^T A=E,设A的转置为A”有 | E A | = | A”A A | = |A|| A” E|=-| (A E)” | =-| E A |所以 | E A | = 0就是说 | A – (-E)| =0这就说明-1是他的一个特征根。

    Q2:求教几道线性代数(行列式)的题目

    这就一道,哪里找几道唦?

    选 C 。 D1=4D=4*(1/2)=2

    D1=|(2a11,a13,a11)(2a21,a23,a21)(2a31,a33,a31)|+|(2a11,a13,-2a12)(2a21,a23,-2a22)(2a31,a33,-2a32)|

    =0c1、c3成比例+(-4)*|(a11,a13,a12)(a21,a23,a22)(a31,a33,a32)|

    =4D c2交换c3

    Q3:求解几道线性代数(行列式)的计算题

    第1题,所有列加到第1列

    然后第1列,减去第n+1列的a1+a2+…+an-1+x倍

    再按第1列展开,进行降阶

    第2题,按第1行展开,得到2个行列式,其中1个行列式是n-1阶,另一个再按第1列展开,得到n-2阶的下三角行列式,于是可以得到递推式

    第3题,用初等行变换,将所有行逆序后,得到范德蒙行列式,套公式

    第4题

    可以参考下列解法:

    第5题

    是对称矩阵,用合同变换,化成对角阵行列式

    第6题

    第2行提取公因子1/2,然后化三角阵行列式:

    再乘以1/2,得到-39

    第7题

    所有列加到第1列,并提取第1列公因子2a+b

    然后第2、3、4列,分别减去第1列的a,b,a倍

    然后按第1行展开,可以得到3阶行列式,然后继续化三角阵即可。

    第8题

    解法同第5题

    第9题

    参考下列解法

    Q4:谁帮我做几道线性代数题?

    一、 1.C 2.C 3.D 4.A 5.B 6.A 7.D 8.D 9.D 10.A 二、 1.A 2.A 3.B 4.B 5.B 一、 1.D 2.A 3.A 4.A 5.B 6.A 7.D 8.D 9.B 10.B 二、 1.A 2.A 3.B 4.不清楚 5.A 一、 1.B 2.C 3.C 4.D 5.C 6.B 7.B 8.A 9.B 10.B 二、 1.A 2.A 3.B 4.B 5.A

    Q5:求教几道线性代数题

    D =

    |a12 a11+a13 6a13|

    |a22 a21+a23 6a23|

    |a32 a31+a33 6a33|

    D = 6*

    |a12 a11 a13|

    |a22 a21 a23|

    |a32 a31 a33|

    D = 6*(-13) = -78.

    4. A 为可逆矩阵(或称满秩矩阵,或称非奇异矩阵)

    5. |A| =

    | 1 -2 9|

    |-1 2k -9|

    | k -2 27|

    |A| =

    | 1 -2 9|

    | 0 2k-2 0|

    | k -2 27|

    |A| = (2k-2)(27-9k) = 0

    k =1, 或 k = 3

    6. 线性相关

    (0)
    上一篇 2022年7月1日
    下一篇 2022年7月1日

    相关推荐