SQLServer 批量插入数据的两种方法

运行下面的脚本,建立测试数据库和表值参数。


复制代码 代码如下:

–Create DataBase

create database BulkTestDB;

go

use BulkTestDB;

go

–Create Table

Create table BulkTestTable(

Id int primary key,

UserName nvarchar(32),

Pwd varchar(16))

go

–Create Table Valued

CREATE TYPE BulkUdt AS TABLE

(Id int,

UserName nvarchar(32),

Pwd varchar(16))

下面我们使用最简单的Insert语句来插入100万条数据,代码如下:


复制代码 代码如下:

Stopwatch sw = new Stopwatch();

SqlConnection sqlConn = new SqlConnection(

ConfigurationManager.ConnectionStrings[“ConnStr”].ConnectionString);//连接数据库

SqlCommand sqlComm = new SqlCommand();

sqlComm.CommandText = string.Format(“insert into BulkTestTable(Id,UserName,Pwd)values(@p0,@p1,@p2)”);//参数化SQL

sqlComm.Parameters.Add(“@p0”, SqlDbType.Int);

sqlComm.Parameters.Add(“@p1”, SqlDbType.NVarChar);

sqlComm.Parameters.Add(“@p2”, SqlDbType.VarChar);

sqlComm.CommandType = CommandType.Text;

sqlComm.Connection = sqlConn;

sqlConn.Open();

try

{

//循环插入100万条数据,每次插入10万条,插入10次。

for (int multiply = 0; multiply < 10; multiply++)

{

for (int count = multiply * 100000; count < (multiply + 1) * 100000; count++)

{

sqlComm.Parameters[“@p0”].Value = count;

sqlComm.Parameters[“@p1”].Value = string.Format(“User-{0}”, count * multiply);

sqlComm.Parameters[“@p2”].Value = string.Format(“Pwd-{0}”, count * multiply);

sw.Start();

sqlComm.ExecuteNonQuery();

sw.Stop();

}

//每插入10万条数据后,显示此次插入所用时间

Console.WriteLine(string.Format(“Elapsed Time is {0} Milliseconds”, sw.ElapsedMilliseconds));

}

}

catch (Exception ex)

{

throw ex;

}

finally

{

sqlConn.Close();

}

Console.ReadLine();

耗时图如下:

由于运行过慢,才插入10万条就耗时72390 milliseconds,所以我就手动强行停止了。

下面看一下使用Bulk插入的情况:

bulk方法主要思想是通过在客户端把数据都缓存在Table中,然后利用SqlBulkCopy一次性把Table中的数据插入到数据库

代码如下:

复制代码 代码如下:

public static void BulkToDB(DataTable dt)

{

SqlConnection sqlConn = new SqlConnection(

ConfigurationManager.ConnectionStrings[“ConnStr”].ConnectionString);

SqlBulkCopy bulkCopy = new SqlBulkCopy(sqlConn);

bulkCopy.DestinationTableName = “BulkTestTable”;

bulkCopy.BatchSize = dt.Rows.Count;

try

{

sqlConn.Open();

    if (dt != null && dt.Rows.Count != 0)

    bulkCopy.WriteToServer(dt);

}

catch (Exception ex)

{

throw ex;

}

finally

{

sqlConn.Close();

if (bulkCopy != null)

bulkCopy.Close();

}

}

public static DataTable GetTableSchema()

{

DataTable dt = new DataTable();

dt.Columns.AddRange(new DataColumn[]{

new DataColumn(“Id”,typeof(int)),

new DataColumn(“UserName”,typeof(string)),

    new DataColumn(“Pwd”,typeof(string))});

return dt;

}

static void Main(string[] args)

{

Stopwatch sw = new Stopwatch();

for (int multiply = 0; multiply < 10; multiply++)

{

DataTable dt = Bulk.GetTableSchema();

for (int count = multiply * 100000; count < (multiply + 1) * 100000; count++)

{

DataRow r = dt.NewRow();

r[0] = count;

r[1] = string.Format(“User-{0}”, count * multiply);

r[2] = string.Format(“Pwd-{0}”, count * multiply);

dt.Rows.Add(r);

}

sw.Start();

Bulk.BulkToDB(dt);

sw.Stop();

Console.WriteLine(string.Format(“Elapsed Time is {0} Milliseconds”, sw.ElapsedMilliseconds));

}

Console.ReadLine();

}

耗时图如下:

可见,使用Bulk后,效率和性能明显上升。使用Insert插入10万数据耗时72390,而现在使用Bulk插入100万数据才耗时17583。

最后再看看使用表值参数的效率,会另你大为惊讶的。

表值参数是SQL Server 2008新特性,简称TVPs。对于表值参数不熟悉的朋友,可以参考最新的book online,我也会另外写一篇关于表值参数的博客,不过此次不对表值参数的概念做过多的介绍。言归正传,看代码:


复制代码 代码如下:

public static void TableValuedToDB(DataTable dt)

{

SqlConnection sqlConn = new SqlConnection(

ConfigurationManager.ConnectionStrings[“ConnStr”].ConnectionString);

const string TSqlStatement =

“insert into BulkTestTable (Id,UserName,Pwd)” +

” SELECT nc.Id, nc.UserName,nc.Pwd” +

” FROM @NewBulkTestTvp AS nc”;

SqlCommand cmd = new SqlCommand(TSqlStatement, sqlConn);

SqlParameter catParam = cmd.Parameters.AddWithValue(“@NewBulkTestTvp”, dt);

catParam.SqlDbType = SqlDbType.Structured;

//表值参数的名字叫BulkUdt,在上面的建立测试环境的SQL中有。

catParam.TypeName = “dbo.BulkUdt”;

try

{

sqlConn.Open();

if (dt != null && dt.Rows.Count != 0)

{

cmd.ExecuteNonQuery();

}

}

catch (Exception ex)

{

throw ex;

}

finally

{

sqlConn.Close();

}

}

public static DataTable GetTableSchema()

{

DataTable dt = new DataTable();

dt.Columns.AddRange(new DataColumn[]{

new DataColumn(“Id”,typeof(int)),

new DataColumn(“UserName”,typeof(string)),

new DataColumn(“Pwd”,typeof(string))});

return dt;

}

static void Main(string[] args)

{

Stopwatch sw = new Stopwatch();

for (int multiply = 0; multiply < 10; multiply++)

{

DataTable dt = TableValued.GetTableSchema();

for (int count = multiply * 100000; count < (multiply + 1) * 100000; count++)

{

DataRow r = dt.NewRow();

r[0] = count;

r[1] = string.Format(“User-{0}”, count * multiply);

r[2] = string.Format(“Pwd-{0}”, count * multiply);

dt.Rows.Add(r);

}

sw.Start();

TableValued.TableValuedToDB(dt);

sw.Stop();

Console.WriteLine(string.Format(“Elapsed Time is {0} Milliseconds”, sw.ElapsedMilliseconds));

}

Console.ReadLine();

}

耗时图如下:

比Bulk还快5秒。
此文原创自CSDN TJVictor

(0)
上一篇 2022年3月21日
下一篇 2022年3月21日

相关推荐