[20190214]11g query result cache rc latches.txt
–//昨天我重复链接http://www.pythian.com/blog/oracle-11g-query-result-cache-rc-latches/的测试,
–//按照我的理解如果sql语句密集执行,使用result cache反而更加糟糕,这是我以前没有注意到的。
–//联想我们生产系统也存在类似的问题,我们有1个判断连接的语句select count(*) from test_connect;
–//在业务高峰它执行可以达到1600次/秒。另外一个简单的select sysdate from dual; 也达到800次/秒。
–//而实际上业务高峰sql语句执行率3000次/秒。这样的2条语句就占了2400次/秒。我以前一直以为将表设置
–//为result cache,可能提高执行效率,还是通过例子测试看看。
1.环境:
scott@book> @ ver1
port_string version banner
—————————— ————– ——————————————————————————–
x86_64/linux 2.4.xx 11.2.0.4.0 oracle database 11g enterprise edition release 11.2.0.4.0 – 64bit production
scott@book> show parameter job
name type value
——————- ——- ——
job_queue_processes integer 200
scott@book> select * from v$latchname where name like ‘result cache%’;
latch# name hash
—— ———————– ———-
436 result cache: rc latch 1054203712
437 result cache: so latch 986859868
438 result cache: mb latch 995186388
–//我看到result cache名字与作者的不同,命名为result cache: rc latch。
scott@book> select name,gets from v$latch where lower(name) like ‘%result cache%’;
name gets
—————————— ———-
result cache: rc latch 0
result cache: so latch 0
result cache: mb latch 0
scott@book> select count(*) from v$latch_children where lower(name) like ‘%result cache%’;
count(*)
———-
0
–//可以注意一个细节,result cache没有children latch。也仅仅1个result cache: rc latch 父latch。从这里也可以看出如果
–//做了result cache的表,多个用户并发执行,可能反而不能获得好的性能,可能出现大量的result cache: rc latch争用的情况.
2.建立测试例子:
create table t as select rownum id from dual ;
create unique index pk_t on t(id);
–//分析略。
scott@book> create table job_times ( sid number, time_ela number);
table created.
–//按照源链接的例子修改如下:
create or replace procedure do_work(
p_iterations in number
) is
l_rowid rowid;
v_t number;
begin
insert into job_times
values (sys_context(‘userenv’, ‘sid’), dbms_utility.get_time)
returning rowid into l_rowid;
for i in 1 .. p_iterations
loop
select count(*) into v_t from t;
end loop;
update job_times set
time_ela=dbms_utility.get_time-time_ela
where rowid=l_rowid;
commit;
end;
/
3.测试:
–//首先测试不做result cache的情况:
–//alter table t result_cache (mode default);
declare
l_job number;
begin
for i in 1 .. 50
loop
dbms_job.submit(
job => l_job,
what => ‘do_work(1000000);’
);
end loop;
end;
/
scott@book> commit ;
commit complete.
–//注意一定要写提交,不然dbms_job.submit要等很久才执行。
scott@book> select count(*),avg(time_ela),sum(time_ela) from job_times ;
count(*) avg(time_ela) sum(time_ela)
———- ————- ————-
50 9235.1 461755
4.测试:
–///测试做result cache的情况,为了测试的准确,我重启数据库。
scott@book> delete from job_times;
50 rows deleted.
scott@book> commit ;
commit complete.
scott@book> alter table t result_cache (mode force);
table altered.
–//重启数据库.
scott@book> select name, gets, misses, sleeps, wait_time from v$latch where name like ‘result cache%’;
name gets misses sleeps wait_time
—————————— ———- ———- ———- ———-
result cache: rc latch 0 0 0 0
result cache: so latch 0 0 0 0
result cache: mb latch 0 0 0 0
declare
l_job number;
begin
for i in 1 .. 50
loop
dbms_job.submit(
job => l_job,
what => ‘do_work(100000);’
);
end loop;
end;
/
scott@book> commit ;
commit complete.
scott@book> select count(*),avg(time_ela),sum(time_ela) from job_times ;
count(*) avg(time_ela) sum(time_ela)
———- ————- ————-
50 7135.96 356798
scott@book> select name, gets, misses, sleeps, wait_time from v$latch where name like ‘result cache%’;
name gets misses sleeps wait_time
—————————— ———- ———- ———- ———-
result cache: rc latch 54232541 3499238 0 0
result cache: so latch 202 0 0 0
result cache: mb latch 0 0 0 0
–//很明显,即使存在result cache: rc latch的争用,但是wait_time=0,不过我发现这样测试的一个缺点,就是50个job并不是同时运行.
–//$ ps -ef | grep ora_[j]|wc ,看看数量是不断增加的过程.
–//而且采用result cache后效果还是增强的.
5.换一个方式测试:
scott@book> delete from job_times;
53 rows deleted.
scott@book> commit ;
commit complete.
–//设置result_cache=default
scott@book> alter table t result_cache (mode default);
table altered.
$ seq 50 | xargs -i{} echo ‘sqlplus -s -l scott/book <<< “execute do_work(1000000)” & ‘| bash
–//等全部完成…
scott@book> select count(*),avg(time_ela),sum(time_ela) from job_times ;
count(*) avg(time_ela) sum(time_ela)
———- ————- ————-
50 10588.26 529413
scott@book> delete from job_times;
50 rows deleted.
scott@book> commit ;
commit complete.
–//设置result_cache=force
scott@book> alter table t result_cache (mode force);
table altered.
$ seq 50 | xargs -i{} echo ‘sqlplus -s -l scott/book <<< “execute do_work(1000000)” & ‘| bash
scott@book> select count(*),avg(time_ela),sum(time_ela) from job_times ;
count(*) avg(time_ela) sum(time_ela)
———- ————- ————-
50 8573.28 428664
–//可以看到即使这样大并发,采用result cache还是要快许多,没有遇到作者的情况.
–//可以11gr2做了一些改进,不会遇到这样的情况.
scott@book> column name format a30
scott@book> select name, gets, misses, sleeps, wait_time from v$latch where name like ‘result cache%’;
name gets misses sleeps wait_time
—————————— ———- ———- ———- ———-
result cache: rc latch 103461569 7263987 0 0
result cache: so latch 302 0 0 0
result cache: mb latch 0 0 0 0
6.不过当我拿作者的最后的例子做最后的测试发现,使用result cache慢很多.
scott@book> create cluster hc ( n number(*,0)) single table hashkeys 15000 size 230;
cluster created.
scott@book> create table hc_t ( n number(*,0), v varchar2(200)) cluster hc (n);
table created.
scott@book> insert into hc_t select level, dbms_random.string(‘p’, 200) from dual connect by level <= 10000;
10000 rows created.
scott@book> commit;
commit complete.
–//分析表略.
all we need now is two procedures, one with a regular select and another with a cached select:
create or replace procedure do_hc(
p_iterations in number
) is
l_rowid rowid;
l_n number;
begin
insert into job_times
values (sys_context(‘userenv’, ‘sid’), dbms_utility.get_time)
returning rowid into l_rowid;
for i in 1 .. p_iterations
loop
l_n:=trunc(dbms_random.value(1, 10000));
for cur in (select * from hc_t where n=l_n)
loop
null;
end loop;
end loop;
update job_times set
time_ela=dbms_utility.get_time-time_ela
where rowid=l_rowid;
end;
/
procedure created.
create or replace procedure do_rc(
p_iterations in number
) is
l_rowid rowid;
l_n number;
begin
insert into job_times
values (sys_context(‘userenv’, ‘sid’), dbms_utility.get_time)
returning rowid into l_rowid;
for i in 1 .. p_iterations
loop
l_n:=trunc(dbms_random.value(1, 10000));
for cur in (select /*+ result_cache */ * from hc_t where n=l_n)
loop
null;
end loop;
end loop;
update job_times set
time_ela=dbms_utility.get_time-time_ela
where rowid=l_rowid;
end;
/
procedure created.
the hash cluster will go first:
scott@book> delete from job_times;
4 rows deleted.
sql> commit;
commit complete.
declare
l_job number;
begin
for i in 1 .. 4
loop
dbms_job.submit(
job => l_job,
what => ‘do_hc(100000);’
);
end loop;
end;
/
pl/sql procedure successfully completed.
scott@book> commit ;
commit complete.
–allow jobs to complete
scott@book> select case grouping(sid) when 1 then ‘total:’ else to_char(sid) end sid, sum(time_ela) ela from job_times group by rollup((sid, time_ela));
sid ela
——- —-
41 446
54 437
80 438
94 437
total: 1758
–//每个测试仅仅需要4秒.
now let’s see if result cache can beat those numbers:
scott@book> delete from job_times;
4 rows deleted.
scott@book> commit ;
commit complete.
scott@book> select name, gets, misses, sleeps, wait_time from v$latch where name like ‘result cache%’;
name gets misses sleeps wait_time
—————————— ———- ———- ———- ———-
result cache: rc latch 20385043 535762 5 94
result cache: so latch 9 0 0 0
result cache: mb latch 0 0 0 0
declare
l_job number;
begin
for i in 1 .. 4
loop
dbms_job.submit(
job => l_job,
what => ‘do_rc(100000);’
);
end loop;
end;
/
pl/sql procedure successfully completed.
scott@book> commit ;
commit complete.
–allow jobs to complete
scott@book> select case grouping(sid) when 1 then ‘total:’ else to_char(sid) end sid, sum(time_ela) ela from job_times group by rollup((sid, time_ela));
sid ela
—— ——
41 3850
54 3853
80 3860
94 3863
total: 15426
–//我的测试使用result cache 更加糟糕!!每个测试需要38秒.而作者的测试两者几乎差不多.作者用 nothing (almost) 来表达.
scott@book> select name, gets, misses, sleeps, wait_time from v$latch where name like ‘result cache%’;
name gets misses sleeps wait_time
—————————— ———- ———- ———- ———-
result cache: rc latch 21768802 1045691 663187 64314325
result cache: so latch 17 0 0 0
result cache: mb latch 0 0 0 0
–//我开始以为这里有1个将结果集放入共享池的过程,每一次执行都需要放入共享池.再次调用应该会快一些.
create or replace procedure do_rc(
p_iterations in number
) is
l_rowid rowid;
l_n number;
begin
insert into job_times
values (sys_context(‘userenv’, ‘sid’), dbms_utility.get_time)
returning rowid into l_rowid;
for i in 1 .. p_iterations
loop
l_n:=trunc(dbms_random.value(1, 10000));
for cur in (select /*+ result_cache */ * from hc_t where n=l_n)
loop
null;
end loop;
end loop;
update job_times set
time_ela=dbms_utility.get_time-time_ela
where rowid=l_rowid;
end;
/
–//再次执行:
declare
l_job number;
begin
for i in 1 .. 4
loop
dbms_job.submit(
job => l_job,
what => ‘do_rc(100000);’
);
end loop;
end;
/
pl/sql procedure successfully completed.
scott@book> commit ;
commit complete.
scott@book> select case grouping(sid) when 1 then ‘total:’ else to_char(sid) end sid, sum(time_ela) ela from job_times group by rollup((sid, time_ela));
sid ela
—– —–
72 3980
81 3900
96 3936
108 3922
total 15738
–//问题依旧.我估计不同查询存在select /*+ result_cache */ * from hc_t where n=l_n的情况下,探查result cache: rc latch持有
–//时间很长,导致使用result cache更慢,这样看来result_cache更加适合统计类结果不变的语句.而且绑定变量不要变化很多的情况.
–//换成普通表测试看看:
scott@book> rename hc_t to hc_tx;
table renamed.
scott@book> create table hc_t as select * from hc_tx ;
table created.
scott@book> create unique index i_hc_t on hc_t(n);
index created.
–//分析表略.
–//调用do_hc的情况如下:
scott@book> select count(*),avg(time_ela),sum(time_ela) from job_times ;
count(*) avg(time_ela) sum(time_ela)
———- ————- ————-
4 431.5 1726
–//调用do_rc的情况如下:
scott@book> select count(*),avg(time_ela),sum(time_ela) from job_times ;
count(*) avg(time_ela) sum(time_ela)
———- ————- ————-
4 4027.75 16111
–//结果一样.删除索引在测试看看.
scott@book> drop index i_hc_t ;
index dropped.
–//调用do_hc的情况如下:
–//delete from job_times;
–//commit ;
scott@book> select count(*),avg(time_ela),sum(time_ela) from job_times ;
count(*) avg(time_ela) sum(time_ela)
———- ————- ————-
4 4160 16640
–//调用do_rc的情况如下:
–//delete from job_times;
–//commit ;
scott@book> select count(*),avg(time_ela),sum(time_ela) from job_times ;
count(*) avg(time_ela) sum(time_ela)
———- ————- ————-
4 3828 15312
–//这个时候result cache优势才显示出来.总之在生产系统使用要注意这个细节,一般result cahe仅仅只读表(dml很少的静态表)外.
–//如果经常使用不同变量查询表,能使用索引的情况,使用result cache毫无优势可言.