1.物体识别
本案例实现对特殊颜色物体的识别,并实现根据物体位置的改变进行控制跟随。
import cv2 as cv # 定义结构元素 kernel = cv.getstructuringelement(cv.morph_rect, (3, 3)) # print kernel capture = cv.videocapture(0) print capture.isopened() ok, frame = capture.read() lower_b = (65, 43, 46) upper_b = (110, 255, 255) height, width = frame.shape[0:2] screen_center = width / 2 offset = 50 while ok: # 将图像转成hsv颜色空间 hsv_frame = cv.cvtcolor(frame, cv.color_bgr2hsv) # 基于颜色的物体提取 mask = cv.inrange(hsv_frame, lower_b, upper_b) mask2 = cv.morphologyex(mask, cv.morph_open, kernel) mask3 = cv.morphologyex(mask2, cv.morph_close, kernel) # 找出面积最大的区域 _, contours, _ = cv.findcontours(mask3, cv.retr_external, cv.chain_approx_simple) maxarea = 0 maxindex = 0 for i, c in enumerate(contours): area = cv.contourarea(c) if area > maxarea: maxarea = area maxindex = i # 绘制 cv.drawcontours(frame, contours, maxindex, (255, 255, 0), 2) # 获取外切矩形 x, y, w, h = cv.boundingrect(contours[maxindex]) cv.rectangle(frame, (x, y), (x+w, y+h), (255, 0, 0), 2) # 获取中心像素点 center_x = int(x + w/2) center_y = int(y + h/2) cv.circle(frame, (center_x, center_y), 5, (0, 0, 255), -1) # 简单的打印反馈数据,之后补充运动控制 if center_x < screen_center - offset: print "turn left" elif screen_center - offset <= center_x <= screen_center + offset: print "keep" elif center_x > screen_center + offset: print "turn right" cv.imshow("mask4", mask3) cv.imshow("frame", frame) cv.waitkey(1) ok, frame = capture.read()
实际效果图
2.移动跟随
结合ros控制turtlebot3或其他机器人运动,turtlebot3机器人的教程见我另一个博文:ros控制turtlebot3
首先启动turtlebot3,如下代码可以放在机器人的树莓派中,将相机插在usb口即可
代码示例:
import rospy import cv2 as cv from geometry_msgs.msg import twist def shutdown(): twist = twist() twist.linear.x = 0 twist.angular.z = 0 cmd_vel_publisher.publish(twist) print "stop" if __name__ == '__main__': rospy.init_node("follow_node") rospy.on_shutdown(shutdown) rate = rospy.rate(100) cmd_vel_publisher = rospy.publisher("/cmd_vel", twist, queue_size=1) # 定义结构元素 kernel = cv.getstructuringelement(cv.morph_rect, (3, 3)) # print kernel capture = cv.videocapture(0) print capture.isopened() ok, frame = capture.read() lower_b = (65, 43, 46) upper_b = (110, 255, 255) height, width = frame.shape[0:2] screen_center = width / 2 offset = 50 while not rospy.is_shutdown(): # 将图像转成hsv颜色空间 hsv_frame = cv.cvtcolor(frame, cv.color_bgr2hsv) # 基于颜色的物体提取 mask = cv.inrange(hsv_frame, lower_b, upper_b) mask2 = cv.morphologyex(mask, cv.morph_open, kernel) mask3 = cv.morphologyex(mask2, cv.morph_close, kernel) # 找出面积最大的区域 _, contours, _ = cv.findcontours(mask3, cv.retr_external, cv.chain_approx_simple) maxarea = 0 maxindex = 0 for i, c in enumerate(contours): area = cv.contourarea(c) if area > maxarea: maxarea = area maxindex = i # 绘制 cv.drawcontours(frame, contours, maxindex, (255, 255, 0), 2) # 获取外切矩形 x, y, w, h = cv.boundingrect(contours[maxindex]) cv.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2) # 获取中心像素点 center_x = int(x + w / 2) center_y = int(y + h / 2) cv.circle(frame, (center_x, center_y), 5, (0, 0, 255), -1) # 简单的打印反馈数据,之后补充运动控制 twist = twist() if center_x < screen_center - offset: twist.linear.x = 0.1 twist.angular.z = 0.5 print "turn left" elif screen_center - offset <= center_x <= screen_center + offset: twist.linear.x = 0.3 twist.angular.z = 0 print "keep" elif center_x > screen_center + offset: twist.linear.x = 0.1 twist.angular.z = -0.5 print "turn right" else: twist.linear.x = 0 twist.angular.z = 0 print "stop" # 将速度发出 cmd_vel_publisher.publish(twist) # cv.imshow("mask4", mask3) # cv.imshow("frame", frame) cv.waitkey(1) rate.sleep() ok, frame = capture.read()
总结
到此这篇关于opencv实现机器人对物体进行移动跟随的文章就介绍到这了,更多相关opencv机器人对物体移动跟随内容请搜索www.887551.com以前的文章或继续浏览下面的相关文章希望大家以后多多支持www.887551.com!